Low-Cost Road-Surface Classification System Based on Self-Organizing Maps
نویسندگان
چکیده
منابع مشابه
Video Navigation Based on Self-Organizing Maps
Content-based video navigation is an efficient method for browsing video information. A common approach is to cluster shots into groups and visualize them afterwards. In this paper, we present a prototype that follows in general this approach. The clustering ignores temporal information and is based on a growing self-organizing map algorithm. They provide some inherent visualization properties ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملConcurrent Self-Organizing Maps for Pattern Classification
We present a new neural classification model called Concurrent Self-Organizing Maps (CSOM), representing a winner-takes-all collection of small SOM networks. Each SOM of the system is trained individually to provide best results for one class only. We have considered two significant applications: face recognition and multispectral satellite image classification. For first application, we have u...
متن کاملMotor Imagery Based Eeg Signal Classification Using Self Organizing Maps
MOTOR IMAGERY BASED EEG SIGNAL CLASSIFICATION USING SELF ORGANIZING MAPS *Muhammad Zeeshan Baig, Yasar Ayaz National University of Science and Technology Islamabad, Pakistan *Contact: [email protected] ABSTRACT: Classification of Motor Imagery (MI) tasks based EEG signals effectively is the main hurdle in order to develop online Brain Computer interface (BCI). In this research article, a re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20216009